Fields Of Interest

Dynamical Systems & Control, Reduced-Order Modeling, Physics-Informed Machine Learning, Uncertainty Quantification

Education

2019-2025 Ph.D., University of Arizona, Tucson, AZ

(expected) Applied Mathematics

2019-2021 M.S., University of Arizona, Tucson, AZ

Applied Mathematics

2012-2016 B.S., University of Arizona, Tucson, AZ

Mathematics & Physics

Research

2020-present Machine Learning Statistical Evolution of the Velocity Gradient Tensor

We incorporate modern ML architectures in physics-informed reduced order models of the inherently chaotic evolution of the velocity gradient tensor in isotropic turbulence.

■ Physics-informed machine learning; Interpretable ML; Transformers; Reduced-order modeling

2021-present Optimal Natural Gas Flows in a Network with Uncertainty

We work to determine optimal flows on a natural gas network under the coupled gas and energy grids upon inclusion of intermittent renewable energies and under stressing scenarios.

■ PDE-constrained optimization; Differentiable programming; Optimization under uncertainty

Work Experience

May '24 -

present,

Summers

Graduate Student Researcher, Los Alamos National Labs, Los Alamos, NM

2020-22

Summer 2023 Google Summer of Code contributor, NumFocus/Julia SciML

2020-2024 Graduate Research Assistant, University of Arizona, Tucson, AZ

2019-2020 Graduate Teaching Assistant, University of Arizona, Tucson, AZ

2016-2019 Software Engineer II, Raytheon Missile Systems, Tucson, AZ

Computer Languages

Julia Proficient Develop research software, Contribute to OSS, (SciML/DifferentialEquations/Flux)

Python Proficient Develop research software, (pytorch/tensorflow)

C/C++ Proficient Used extensively in an embedded environment at Raytheon Missile Systems

Bash Comfortable Basic functionality used daily

Matlab Comfortable

Cuda Beginner

Computer Skills

Open git/workflow, LATEX, Linux

Software

HPC Slurm, Docker, MPI/parallel computing

Methodologies CI, TDD, Agile

Fellowships

May 2024 Orin Flanigan Scholarship Pipeline Simulation Interest Group

Aug 2021 - NSF Data-Driven Research Training Group Traineeship University of Arizona College of Science,

May 2023 Mathematics

Jan 2022 - Roots for Resilience Data Science Scholarship *University of Arizona Data Science Institute,*May 2022 *Arizona Institute for Resilience*

Service and Leadership

Apr 2023 Organized and presented "Introduction to Parallelization" for NSF Data-Driven Research Training Group

Mar 2023 Graduate Mentor for American Statistical Association DataFest Competition

Quarterly Organized and presented "Introduction to HPC" seminar for Math PhD students

2021-2022

Aug 2021 - SIAM Brownbag Student Colloquium Organizer

May 2022

Jul 2018 - Certified Scrum Master: Scaled Agile Framework

Jul 2019

Selected Publications

Hyett, Criston et al. **2024a**. "Differentiable Simulator For Dynamic and Stochastic Optimal Gas and Power Flows". In: (*To appear*) 2024 63nd IEEE Conference on Decision and Control (CDC). IEEE.

Hyett, Criston et al. **2024b**. "Improving velocity gradient statistical topology using parameterized Lagrangian deformation networks". In: *preparation*.

Hyett, Criston et al. **2023**. "Control of Line Pack in Natural Gas System: Balancing Limited Resources under Uncertainty". In: *PSIG Annual Meeting*. PSIG, PSIG–2314.

Tian, Yifeng, [...], **Hyett, Criston**, et al. **2022**. "Lagrangian Large Eddy Simulations via Physics Informed Machine Learning". In: *arXiv* preprint *arXiv*:2207.04012.

Woodward, Michael, [...], **Hyett, Criston**, et al. **2021**. "Physics Informed Machine Learning of SPH: Machine Learning Lagrangian Turbulence". In: *arXiv preprint arXiv:2110.13311*.

Selected Talks

Hyett, Criston et al. **2023**. "Velocity gradient prediction using parameterized Lagrangian deformation models". In: *Bulletin of the American Physical Society*.

Hyett, Criston et al. **2021**. "Machine Learning Statistical Evolution of the Coarse-Grained Velocity Gradient Tensor". In: *APS Division of Fluid Dynamics Meeting Abstracts*, E31–009.

Human Languages

English Native Speaker

Spanish Basic

Amharic Beginner